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We examine the reduction problem for the trajectories of a conflict-controlled 
linear stationary system in a specified neighborhood of the equilibrium position. 
The actions of the opponents are restricted by constraints on the magnitude of 

the total momenta of controls. Such constraints admit of stepwise displacements 
along directions capable of piercing the target set. The considered problem is 

reduced, by means of the generalized impulse calculus, to an auxiliary one which 

is solvable by the methods in Cl]. The obtained impulse extremal construction 
depends upon the initial position and admits of stepwise motions in the sliding 

mode. In the general case it is necessary for the party interested in the reduc- 

tion to know the part of the trajectory realized up to the instant of making a 

decision. In Sect. 1 we examine the problem of the encounter of two material 

points of variable mass, while in Sect. 2 the reduction problem for a multidi- 

mensional conflict-controlled stationary system with a nonsingular matrix is 

considered. 

1. The encounter of two mrterirl points. Let IC be the distance bet- 

ween two points moving along a straight line under the action of reactive forces. The 

encounter process can be described by the Meshcherskii equation 

5” zzz u - v; JJ,rE -$y mz. 

ml 
v=-c2- 

mz (1.1) 

In (1.1) mi is the mass of the i-th point (i = 1,2) and ci is the relative discharge ve- 

locity of the reactive mass. Let t,, be the time reference point. We assume that the mass 

A.mi (t) is subject to the constraii,t 

IAmi (t)l < Ami, to < t (1.2) 

Ami (t) = mi (t) - mi (to); Ami (t) ~0, t < to 

Below we assume that the controls u and u are exercised by the first and second play- 

ers, respectively. Let to and 0 (to < 0) be the instants of beginning and completion 
of the game. The first player’s aim is to realize at the instant 8 the inequality 

x2 + x.2 < es (1.3) 

The second player’s task is to hinder this. Let us formalize this problem in terms of the 
differential game theory. To do this it is necessary to ascertain the structure of the con- 
straints imposed on controls u and 2, by the formulation of the problem. We denote the 
current value of the total momentum of control u by p (t). Then 
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Hence the estimate 

I P v> I < El09 Flo = Cl $J 

foIlows from (1,. 2). The estimate 

1 v @) I< vo: 
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(1.4) 

(1.5) 

where Y (t) (is the current value of the total momentum of control 2, is derived analog- 

ously. Thus, constraints (1.2) on the reactive masses are equivalent to constraints on the 

momenta of the corresponding reactive forces. 

Below we determine the players’ admissible strategies [I]. But first we stipulate the 
class of admissible strategies M for forming the total momentum p (t) of control u. 
We assume that the strategy M associates a set M (tl S) of segment (1.4) with each 

position (t, CC), J: = (2, so)= . Here we assume that the sets M (t, x) are closed and 
convex with respect to 2 and are semicontinuous from above with respect to inclusions 

under the variation of (t, z). Admissible strategies ?I for forming the total momentum 
V (t) are determined analogously. 

The total momentum lo (t) (V (t))l locally summable with respect to time and ge- 

nerated by strategy M (respectively, by strategy N), permits us to determine the control 

u = p’ (V -_ V’) (1.Q 
Thus, we can state the problem. 

Problem A,. For a given initial position (to, x0) find a strategy M(H) which 

for any choice of admissible strategy .‘fJ ensures that the point z (t, to, zs, M(R), N) 

reaches set (1.3) at the instant tl. 

We pass on to the construction of an auxiliary reduction problem. For our purposes the 
first-order generalized impulse calculus proves to be sufficient [2], In shch a calculus 

the original .a is expanded into the integral 
m 

2= J+ 
6’ (t - h) z* (h) dh 

with respect to shifts of the dipole 6’ (here the integration is understood in the meaning 

of [ 21). The transform z* can be obtained by a convolution [ 33 of the original with the 

Heaviside function x (t - to) equal to zero for t < to and to unity for to < t. 

Let us write Eq. (1,l) in the form of system 
. 

$1 = 2% + 510 6 (t - to), x2' = u - u $- z,&(t - to) (1.7) 

31 =x1 22 = Lx*, "10 = 25 (&?I, 520 = x’ (10) 

where 6 is the Dirac impulse function which with the specified initial conditions causes 
the motion of system (1, ‘7). For r, < t we define the shift by 

Yl =x1*, ?/3 = 52* + x2() l&8) 

In the new coordinates the transorm system has the form 

7J; = ?/*, yz’ = p - v + z20 , $5 (a = 0, ?A! (to) = 510 0.9) 



Using the inverse transform formula ~I’i = zi”’ (i := 1, z), the transormation (1. 8) 

and the system (1,9), we can obtain relations connecting the parameters of the original 

and auxiliary problems (t, < i) ,1’1 = ~,,~ 
” X.2 -= p - v -j- ‘CXO il.10) 

Substituting (1.10) into (1.3) we have for the sought auxiliary problem the target set 

$22 + iv (0) - v (0) -t- r,,i’ < &2 (1. II) 

Thus, Problem “1, is equivalent to the following problem. 
Problem B,, For a given original position (&,, y,,), where y. = (0, slo)T , 

find the strategy McJJ) which for any choice of admissible strategy S ensures that the 

point y tt, t,, y (to), M(H), Iv] reaches set (l.ll& 
The values of p (Irl) (8) constituting the set M( NJ (8, y) are sought as solutions of 

(1.12) 

The best action of the second player is determined by the formula 

1’0, Go < - PO 

yw! (0) 7 

1 
i\‘o, 111.2ol\(ro (1.13) 

-“. vo, PO < x20 

Substituting (1.12) and (1.13) into (1, II>, we have the pre-target set in Problem B, 

1& (e) 1 x< kJ (“&) (1.14) 

h_ = fez - Q&J - v* “i_ *r20)2p, 

/1. (,yco) = 

i 

s:o < - po 

ho := (9 - Y>)“Z, I bT”,B I Q PO 
h., = [&2 - (- p.0 + 2’0 -t_ Lr.?o)zJ’$ pcJ <I x20 

An analysis of function h yields the necessary reduction condition 

vo < e fl.15) 

and the region of initial conditions in Problem &t, from which reduction is perhaps pos- 

sible 
ITfOl < 8 i- po - va (LI6) 

Thus, to solve Problem B1 it is sufficient to solve the following problem. 
Prablem C,. For a given original position (to, y (1,)) find the strategy &IV0 

which for any choice of admissible strategy s would ensure that the point 9 If, to, 
1) (to), RI(sj, Nl reaches set (1.14) at the instant 8. 

We solve this problem in accordance with [ 11. The set M/ (0, t) of program absorp- 
tion of the target (1. X4) is determined as the set of vectors 

A 
zc = ($r,,~2)~ which satisfy 

the condition 
- 

\ -+ sfx (e, T) (O,X~J’~ dz: -+ p+ (s, t, 0) - (1.1;) 
t pL cs, t, e) - fklr (s) - sTX (e, t) w Q 0 
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for all unit vectors s. In (1.1’7) X is the fundamental matrix of the homogeneous sys- 

tem (1,19), p-J\ is the support function of set - iV (kl is set (1.14)). and Pi is the 

support function of the attainability set of the i th player (i = 1, 2). We have 

0 

pl= max [si(0-r)+sz]p(r)dt= s IP<l’~O ( 
0 

(1.18) 

PO $ I SI (0 - z) + ~2 I dz, ~2 = vo i I Q@ - z) + ~2 1 dr 

t 

P-M (s) = 

Substituting (1.18) into (1.17) and computing the maximum of the left hand part with 

- 

resPect to ” we Obtain so (t, y) = (0, - sign [z20 (0 - t) $- y21)r 

w (6 t) = {Y IH_ 0) G y2 < H+ (t)] 

H& (t) = f h + (* PO T vo - 520) (0 - 

The set W (0, t) is nonempty if 

0 < h f (~a - vO) (0 - t,) 

We compute the support function 

Sl f- 0 
&HI_. +=-+I, sl==i) 

(1.19) 

4 

(1.20) 

(1.21) 

Allowing for (1.21) 

x(t, Y) = ;,a; isTy - pw (s)J == 
~2 - H,, -~w(e--t)<Y, (1 c-&l) 

l .-,,< - Y2 t Ii-7 Yn< - s,,(0 - t) 

The strategy which is extremal relative to 1%’ (0 - t), has the form 

M'"' (t, y) = 
{PIIIKYOL x(t,y)<O 
M@) It. s7 (k y)], 0 < x (t, y) 

0.23) 

where 

M’“‘[t s’(t y)] = 
- PO, -x20@ - t) <y2 

, 7 
pot Yz<---20((3---t) 

and is determined from the maximum condition for s OT (0, p)T. Combining results 

(1.22) and (1.23), we obtain the strategy 

M'%Y) = Wpf=0oL H_<yz<H+ 

1 

-- PO, H+<Y~ 

PO7 yz<H- 

0.24) 

which solves Problem c,. Completing its determination up to instant 8 by the formula 
(1.12) we obtain the extremal strategy for F’roblem B,. 

We now construct the strategy for solving the original problem A,. For this we trans- 
form the variables in strategy (1.24) with the use of formulas (1.10). We have 
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- PO, H,<Xl 
{PI IplI\<o), H_<xI<H+ (1.25) 

PO xl<H- 

Hence M(H) (t, 5) = M(e) (1, Z) for t < 0 and M@) (t, z) = pcH) (e) for t = 0. 

Fig. 1 

The region of initial conditions which 

lead to a successful completion of the 

first player’s point of view, is the inter- 

section of sets W (0, to) and (1.20). If 

yo < CLOY then (1.20) holds and the 
considered region consists of the regions 

i 

- h+ (X20) + (vo - Ilo - 520) (0 - to) < x10 < h+ (Jzo) + (1.27) 

(PO - v0 - 220) (0 - to) 

Strategy (1.25) corresponds to the bridge 

H- < xl< H, (1.26) 

Bridge (1.26) depends upon the initial pe- 
sition. The transition from the strategy 
Rl(H)(t, x) to control U, which is effected 

by differentiating (1.6), automatically 
formalizes the impulse-sliding modes ari- 

sing at the boundary of the bridge (1.26). 

I 
IX2oKPo 

- J&2 - Yo2 + (vo - PO - x*0) (0 - to) < 510 < 0 - yo2 + 

(PO - yo - x20)@ - to) 

i 

vo-po- E<X*o<-PO 
- h_ (x2o) + (vo - po - 520) (0 - to) < 210 < h- (Go) + 

(po- yo - x20)@- to) 

Region (1.27) and bridge (1.26) are shown in Fig. 1. 

when clo<vot requirement (1.20) yields the condition v. - Jf ee - vgp (e - 

to)-’ < p. and constricts region (1.27) to the form resulting from (1.27) by replacing 
the E occurring in the upper relations in the first and last regions by 

[e2 - (Yg - PO)2 (0 - t,)q’:;. 

2. General case of a conflict-controlled linear ayatem, wecon- 
sider an object (2.1) and a target set (2.2) 

z’ =Ast_ bu-ecu =L(z, u, V) (2.1) 

da (z) = 2T 02 < Es (2.2) 

Here A is an ( ?I X n )-matrix ; b and c are n-vectors, and D is a nonnegative 
symmetric matrix. It is assumed that control u is restricted by constraint (1.4). while 
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control Y is subject to requirement (1.5). The players’ admissible strategies are to be 
understood in the meaning of Sect. 1 with the addition that at the instant t the first 

player is informed about his own past history : {LX (T)}~A+<~. 
Problem A,. For a given initial position (to, ~0) find the strategy M(H) which 

for any choice of admissible strategy N ensures that the phase point of system (2.1) 

reaches set (2.2) at instant 8. 

Let us construct the auxiliary reduction problem. The system (2.1) under transforms 
has the form c x* = L (x*, p, v) + x,x (t - to) 

dt (2.3) 

If det A # 0, the reaction of object (2,3) admits of a decomposition into the com- 
ponents 

x* = y - A-1x0, to < t 

In (2.4) y is the solution of the Cauchy problem 

y’ = L (Y, pL, v>, y (to) = A%, = yo (2.5) 

From (2.4), (2.1) and (2.5) follows the formula for the connection between variables 

J: = L (y, p, v), to < t (2.6) 

Thus, Problem As is equivalent to the following problem. 

Problem B,. For a given initial position (to, y,,) find the strategy M(H) which 

for any choice of admissible strategy N ensures that the phase point of system (2.5) 

reaches at the instant 8 the set (2.2), where 2 = L [y, p (Cl), Y (C)l. 
The value of p@) (0) constituing set M(H) (0, 3) must solve the problem 

min max d (z) = d (z”), (2.7) 
P(s) 0) 

z” = L [y, pcH) (0), dH) @)I 

d (z*> < a 

where 5 is defined by formula (2.6) (t = 0). The maximization in (2.7) yields 

v” (0) = -YO sign [gcTy + yp (@I; g, = AT&, y = bTDc (2.8) 

We consider two cases. 

First let y = 0. Then according to (2.8) 

~(~1 (0) = - v,sign gcTy (2.9) 

since v” (0) is independent of p (0). With allowance for (2.9) we can obtain 

i 

PO, gbTy<- pea 

w vu = DDE), I~,-~G~~x. 
(2.10) 

- PO7 CLoa< GITY 

gl, = ATDb, a = d2 (b), PlW = c&-y 

Now let y > 0. The minimization in (2.7) with condition (2.8) yields 
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I 'PO < r*,Y and gbTy < TV, - 2p0 

PO, 1 “‘Y I< PO and g,‘Y < - ‘Ipo 

r*Y < - Tvo and gbTy < - 7~0 - +-LO 

a-%‘~ - a-‘gbTy, p. < rTy and rvo - ape < 

&*Y < TV0 -t ap, 

PcH) (0) = ( - T%‘~*Yy Ir*Y I< rvo and 1 gcTy I< rpo (2.11) 

- a-+, - a-lgbTy, TTY <--Try0 and - rvo - 

%< g**y<- rvofupo 
T%<~*Y and v. + apo<gbTy 

%I and W~<g,*y 

I and - rvo + ctpo < g,Ty 

In (2.11) we have adopted the notation r = g, - qelgc. In accordance with (2.9) 

vcri) (0) = - sign [g,*y + yp(“‘(Wl (2.12) 

corresponds to Eq. (2.11). 

Thus, to solve Problem B, it is sufficient to solve the following problem. 

Problem C,. For a given initial position (to, Yo) find the strategy IV{(“) which 

for any choice of admissible strategy Iv would ensure that the phase point of system 

(2.5) reaches at the instant 0 the set defined by the second of relations (2.7). 

We solve this problem by the scheme in [ 11. The set w (8, 1) of program absorp- 

tion of the target is determined as the set of vectors w which satisfy the condition 

pz (s, t, 0) - p1 (s, t, 0) - p-M (s) - sT&-Qw < 0 (2.13) 

for all unit vectors s. In (2.13) pi is the support function of the attainability set of the 

i th player (i = 1, 2) and p_nr is the support function of set - Rl (AI is the set of 

5’ from (2.7)). We have 

Then, having defined the function x (t, Y) 
maximum condition for a”” hlr , the set 

- max [STY - p~v(s,~,] and, from the - 
IlSllS 

we obtain the strategy 

(2.14) 

which solves Problem C,. In (2.14) so (1, y) maximizes the left-hand part of (2.13). 

Defining the strategy &l(rf) (1, g) at instant t ZT 8 by formula (2. lo), we arrive at 
the extremal strategy for Problem B,. If in the latter we make the change 
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which follows from (2.4), we obtain the strategy for solving the original Problem A 2. 

Now, in contrast to Sect. 1, the first player generally needs to know his own past history 

when making a decision. 

Fig. 2 Fig. 3 

Application. Let D be the unit ( n X n )-matrix, II b U = II c II = 1. We present 
the support function of set -M for two cases: bTc = 0 and b = c. We note that --M= 
M and perform the transformation 2 = Ay. Then 

pi (S) = II l II PAM (2 II I II -‘)f 2 = A-‘=.9 

The problem reduces to the calculation of the support function of set AM. If bTc = 0, 
112 II= 1, zTb > 0 and ZTe > 0, then oAM (I) = E + ZT (bpo - CYO). The value of PAM (4 

for the other regions is found from the symmetry of set AM (Fig. 2). The set AM isshown 
in Fig. 3 for b = e . The necessary reduction condition is defined by inequality (1.15) 

and p_@t (Z) = E + (pO - vo) 1 ZTb I. 
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